Math, asked by noorminhas30, 3 months ago

If y= sin-1 x/(1-x2)^1/2,then dy/dx=

Attachments:

Answers

Answered by vipinkumar212003
1

Step-by-step explanation:

y =  \frac{ { \sin }^{ - 1}x }{ \sqrt{1 -  {x}^{2} } } =  \frac{ { \sin }^{ - 1} x}{ {(1 -  {x}^{2} )}^{ \frac{1}{2} } }     \\   \blue{  \boxed{y =  \frac{u}{v}  }} \\ \blue{  \boxed{ \frac{dy}{dx}  =  \frac{v \frac{du}{dx} - u \frac{dv}{dx}  }{ {v}^{2} }   }} \\  \frac{dy}{dx}  =  \frac{   {({1 -  {x}^{2} })}^{ \frac{1}{2} }   \times  \frac{1}{  {({1 -  {x}^{2} })}^{ \frac{1}{2} } }   -{ \sin }^{ - 1}x \times  \frac{1}{2}{(1 -  {x}^{2} )}^{ -  \frac{1}{2} } \times ( - 2x) }{ {(  {({1 -  {x}^{2} })}^{ \frac{1}{2} }  )}^{2} }  \\   \\ {(1 -  {x}^{2} )} \frac{dy}{dx} =  1    +x {\sin }^{ - 1}x \times  {(1 -  {x}^{2} )}^{ -  \frac{1}{2} }  \\  \\  \blue{ \rightarrow{let  \: \:{\sin }^{ - 1}x \times  {(1 -  {x}^{2} )}^{ -  \frac{1}{2} }  = y}} \\  \\ {(1 -  {x}^{2} )} \frac{dy}{dx} =  1+xy \\  \\  \blue{ \boxed{correct \: answer \rightarrow \: (ii)}} \\  \\\red{\mathfrak{\underline{\large{Hope \: It \: Helps \: You }}}} \\ \green{\mathfrak{\underline{\large{Mark \: Me \: Brainliest}}}}

Answered by sandy1816
0

Step-by-step explanation:

y =  \frac{ {sin}^{ - 1}x }{ \sqrt{1 -  {x}^{2} } }  \\  \\  y \sqrt{1 -  {x}^{2} }  =  {sin}^{ - 1} x \\  \\ differentiate  \:  \: \: w.r.t \:  \:  \:  \: x \\  \\ y \frac{1}{2 \sqrt{1 -  {x}^{2} } } ( - 2x) +  \sqrt{1 -  {x}^{2} }  \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\  \\ multiplying \:  \sqrt{1 -  {x}^{2} } both \: sides \\  \\  - xy + (1 -  {x}^{2} ) \frac{dy}{dx}  = 1 \\  \\ (1 -  {x}^{2} ) \frac{dy}{dx}  = 1 + xy

Similar questions