Math, asked by saileedalvi791, 9 months ago

If y = ( sin^-1x )^2 then find d^2y/dx^2

Answers

Answered by Anonymous
83

Questìon :

if y = (sin⁻¹x)² , then find d²y/dx²

Theory :

{\red{\boxed{\large{\bold{Chain\:Rule}}}}}

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution:

 \sf \: y = ( \sin {}^{ - 1} x) {}^{2}

Differentiate it with respect to x

 \sf \:  \dfrac{dy}{dx}  =  \dfrac{d(\sin {}^{ - 1} x) {}^{2} }{x}

 \implies \sf \:  \dfrac{dy}{dx}  =  2(\sin {}^{ - 1} x )\times  \dfrac{1}{ \sqrt{1 - x {}^{2} } }

\implies \sf \:  \dfrac{dy}{dx}  =  \dfrac{ 2 \sin {}^{ - 1}x }{ \sqrt{1 - x {}^{2} } }

Now Differentiate again it with respect to x by ,using Quotient Rule.

\implies \sf \:  \dfrac{d {}^{2} y}{dx {}^{2} }  =   \dfrac{ \sqrt{1 - x {}^{2}  }  \times 2 \times  \frac{1}{ \sqrt{1  -  {x}^{2} } }  -2 (\sin {}^{2}x )  \times  \frac{1}{2 \sqrt{1 - x {}^{2} } }  - 2x}{( \sqrt{1 - x {}^{2} } ) {}^{2} }

\implies \bf \:  \dfrac{d {}^{2} y}{dx {}^{2} }  =  \dfrac{2 +  \frac{2x( \sin {}^{ - 1}x) }{ \sqrt{1 - x {}^{2} } } }{1 - x {}^{2} }

It is the required solution!

_______________________

More About Differention :

•Quotient rule

Let u = f(x) and g(x).Then ,

\implies \sf \:  \dfrac{d u}{dv }  = \dfrac{v \times  \frac{du}{dx} - u \times  \frac{dv}{dx}  }{v {}^{2} }

Similar questions