If y=sin[2tan^-1((√1-x) ÷(1+x))],find dy÷dx
Answers
Answered by
1
Answer:
L.H.S=\sin(2\tan^{1} \dfrac{\sqrt{1-x}}{\sqrt{1+x}})
Put x=\cos 2A
=\sin(2\tan^{1} \dfrac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}})
=\sin(2\tan^{-1} \sqrt{{\dfrac{2\sin^2 A}{2\cos^2 A}}} )
=\sin(2\tan^{-1} \sqrt{{\dfrac{2\sin^2 A}{2\cos^2 A}}})
=\sin(2\tan^{-1} \sqrt{{\tan^2 A}})
=\sin 2A
∴ \sin 2A=\sqrt{1-\cos^2 2A}
\sin 2A=\sqrt{1-x^{2}}
=R.H.S, proved.
Hence, \sin(2\tan^{1} \dfrac{\sqrt{1-x}}{\sqrt{1+x}})=\sqrt{1-x^{2}}, proved.
Similar questions