Math, asked by jayu7015, 4 days ago

If y= sin inverse(3sinx+4cosx)/5 then find dy/dx

Answers

Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

\tt{y=sin^{-1}\bigg(\dfrac{3\,sin(x)+4\,cos(x)}{5}\bigg)}

\sf{\implies\,y=sin^{-1}\bigg(\dfrac{3}{5}\,sin(x)+\dfrac{4}{5}\,cos(x)\bigg)}

\sf{Let\,\,tan(\alpha)=\dfrac{4}{3}}\\\sf{\implies\,sin(\alpha)=\dfrac{4}{5}\,\,\,\,and\,\,\,\,\,cos(\alpha)=\dfrac{3}{5}}

So,

\sf{\,y=sin^{-1}\{sin(x)cos(\alpha)+cos(x)sin(\alpha)\}

\sf{\implies\,y=sin^{-1}\{sin(x+\alpha)\}

\sf{\implies\,y=x+\alpha

Differentiating both sides w.r.t x,

\sf{\implies\,\dfrac{dy}{dx}=1

Similar questions