Math, asked by sagargswamigsm6975, 1 year ago

if y= sin inverse [ 5x +12 root 1-x2 by 13 find dy by dx

Answers

Answered by alanannanto2001
23

Answer:


Step-by-step explanation:


Attachments:
Answered by lublana
17

Given:

y=sin^{-1}(\frac{5x+12\sqrt{1-x^2}}{13})

To find :

\frac{dy}{dx}

Solution:

y=sin^{-1}(\frac{5x+12\sqrt{1-x^2}}{13})

y=sin^{-1}(\frac{5}{13}x+\frac{12}{13}\sqrt{1-x^2})

y=sin^{-1}(x\sqrt{\frac{25}{169}}+\frac{12}{13}\sqrt{1-x^2})

y=sin^{-1}(x\sqrt{1-(\frac{12}{13})^2}+\frac{12}{13}\sqrt{1-x^2})

We know that

sin^{-1}x+sin^{-1}y=sin^{-1}(x\sqrt{1-y^2}+y\sqrt{1-x^2})

y=sin^{-1}x+sin^{-1}(\frac{12}{13})

Now, differentiate w.r.t x

\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}+0

By using the formula

\frac{d(sin^{-1}(x))}{dx}=\frac{1}{\sqrt{1-x^2}}

\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}

Similar questions