Math, asked by shivamsharma75665, 9 months ago

if y=sin inverse ( acosx -bsinx /bsinx + acosx ) find differential cofficient w.r.t. x.​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \sin^{ - 1} ( \frac{a \cos(x) - b \sin (x )}{a \cos(x) + b \sin(x)  } )

Now,

 \frac{dy}{dx} =  \frac{d}{dx} (\frac{a \cos(x) - b \sin(x)}{a \cos(x) + b \sin(x)} ) . \frac{1}{ \sqrt{1 -   { (\frac{a \cos(x) - b \sin(x)  }{a \cos(x) + b \sin(x)  }) }^{2}  } }

On simplifying,

 \frac{dy}{dx}  =   - \frac{2ab}{ {(a \cos(x)  + b \sin(x ) )}^{2} } . \frac{(a \cos(x)  + b \sin(x)) }{ \sqrt{4ab \sin(x) \cos(x)  } }

 \frac{dy}{dx} =   - \frac{ \sqrt{2ab} }{(a \cos(x) + b \sin(x) ). \sqrt{ \sin(2x) }  }

Similar questions