if y = ( sin inverse of x )² + ksin inverse of x, then
(1-x²)d²y/dx² - xdy/dx is equal to :
a) 0
b) 1
c) 2
d) y
Answers
Answered by
0
We seek to show that:
(1 − x2) d2ydx2 − xdydx − 2 = 0 where y = (sin − 1x) 2
Using the result:
ddx (arcsinx) = 1√1 − x2
In conjunction with the chain rule, then differentiating y = (sin − 1x) 2 wrt x we have:
dydx = 2arcsinx√1 − x2
And differentiating a second time, in conjunction with the quotient rule, we have:
d2ydx2 = (√1 − x2) (2√1 − x2) - (12 (−2x) √1 − x2) (2arcsinx) (√1 − x2) 2
= 2 + 2x arcsinx√1 − x21 − x2
And so, considering the LHS of the given expression:
LHS = (1 − x2) d2ydx2 − xdydx − 2
= (1 − x2) ⎧⎪⎨⎪⎩2 + 2x arcsinx√1 − x21 − x2⎫⎪⎬⎪⎭ − x {2arcsinx√1 − x2} −2
= 2 + 2x arcsinx√1 − x2−2xarcsinx√1 − x2−2
= 0 QED
Similar questions