Math, asked by jasleenaneja123, 2 months ago

If y = sin (log (log 3x)), find
dy
dx​

Answers

Answered by ridhya77677
3

given:

y =  \sin( log( log(3x) ) )  \\

let \:  log(3x)  = t \\ on \: differentiating \: both \: sides \: w.r.to \:  \: x,we \: get \\  \frac{1}{3x}  =  \frac{dt}{dx} \\  =  >  \frac{dt}{dx}  =  \frac{1}{3x}   \:  \:  \:  \:  \: eqn(1) \\ now,\:  \:  \: y = \sin( log(t) )  \\ again, \: let \:  log(t)  = u \\ on \: differentiating \: both \: sides \: w.r.to \:  \: t,we \: get \\  \frac{1}{t}  =  \frac{du}{dt}  \\  =  >  \frac{du}{dt}  =  \frac{1}{t}  \:  \:  \:  \: \:  \:  \:   eqn(2) \\ now, \:  y =  \sin(u)  \\ differentiating \: w.r.to \:  \: x,we \: get \\  \frac{dy}{dx}  =  \cos(u)  \times   \frac{du}{dx}  \\  =  >  \frac{dy}{dx}  =  \cos(u)   \times \frac{du}{dt}  \times  \frac{dt}{dx}  \\ put \: the \: value \: of \: u \: and \: t \: from \: eqn(1) \: and \: eqn(2),, \\  =  >  \frac{dy}{dx}  =  \cos( log(t) )  \times  \frac{1}{t}  \times  \frac{1}{3x}  \\  =  >  \frac{dy}{dx}  =  \cos( log( log(3x) ) )  \times  \frac{1}{ log(3x) }  \times  \frac{1}{3x}  \\ hence, \:  \frac{dy}{dx}  =  \frac{ \cos( log( log(3x) ) ) }{3x log(3x) }

Similar questions