Math, asked by farismitateronpi, 9 months ago

if y=sin(sin x); prove that y2+tanx y1+y cos²x=0​

Answers

Answered by pulakmath007
25

\huge\boxed{\underline{\underline{\red{Solution}}}}

y=sin(sin x)

Differentiating both sides with respect to x we get

 \displaystyle \: y_1 \:  =  \frac{d}{dx} \{sin(sinx) \}

 \implies \displaystyle \: y_1 \:  =  cos(sinx)\frac{d}{dx} (sinx)

 \implies \displaystyle \: y_1 \:  = cosx \:  \:  \times  \:  cos(sinx)

Again Differentiating both sides with respect to x

 \displaystyle \: y_2 \:  =  \frac{d}{dx} \{cosx \:  \times cos(sinx) \}

 \implies \displaystyle \: y_2 \:  =   - sinx \:  \times cos(sinx) -  {cos}^{2} x \:  \times sin(sinx)

Now

LHS

 \displaystyle \: y_2 + tanx  \times \:  y_1 + y {cos}^{2} x

  =  \displaystyle \:    - sinx \:  \times cos(sinx) -  {cos}^{2} x \:  \times sin(sinx) \:  + tanx \:  \times cosx \:  \times cos(sinx) +  {cos}^{2}  x \times sin(sinx)

  =  \displaystyle \:    - sinx \:  \times cos(sinx) -  {cos}^{2} x \:  \times sin(sinx) \:  +sinx \:  \times cos(sinx) +  {cos}^{2}  x \times sin(sinx)

 = 0

Hence Proved

Similar questions