Math, asked by vasanthvelavan3367, 11 months ago

If y=sin(sinx),prove y₂+tanx.y₁+ycos²x=0

Answers

Answered by sardokaengti
0

Answer:

derive two times and substitute the value you get in the equation

Attachments:
Answered by bestwriters
1

Given:

y=\sin (\sin x)

Step-by-step explanation:

On differentiating the given equation wrt to ‘x’, we get,

y_{1}=\frac{d y}{d x}=\cos (\sin x) \cos x

\bold{[\because \frac{d y}{d x}(x y)=x y^{\prime}+x^{\prime} y]}

Again on differentiating the above equation wrt to ‘x’, we get,

y_{2}=\frac{d^{2} y}{d x^{2}}=-\sin x \cos (\sin x)+\cos x(-\sin (\sin x) \cos x)

\Rightarrow y_{2}=-\sin x \cos (\sin x)-\cos ^{2} x \sin (\sin x)

\Rightarrow y_{2}=-\sin x \cos (\sin x)-y \cos ^{2} x

On multiplying and diving \cos{x}, we get,

\Rightarrow y_{2}=-\frac{\sin x}{\cos x} \cos (\sin x) \cos x-y \cos ^{2} x

\Rightarrow y_{2}=-\frac{\sin x}{\cos x} y_{1}-y \cos ^{2} x

\Rightarrow y_{2}=-y_{1} \tan x-y \cos ^{2} x

\therefore y_{2}+\tan x y_{1}+y \cos ^{2} x=0

Hence proved.

Similar questions