Math, asked by sks1312003, 2 months ago

If y = sin-? [x√(1-x) - √x√1–x^2], find dy/dx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(x \sqrt{1 - x} -  \sqrt{x} \sqrt{1 -  {x}^{2} } \bigg)

can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {( \sqrt{x} )}^{2} } -  \sqrt{x} \sqrt{1 -  {x}^{2} } \bigg)

We know,

\boxed{\sf{\:{sin}^{ - 1}x-{sin}^{-1}y =  {sin}^{-1}\bigg(x\sqrt{1- {y}^{2}}-y \sqrt{1-{x}^{2} }\bigg)}}

Using this, we get

\rm :\longmapsto\:y =  {sin}^{ - 1}x -  {sin}^{ - 1} \sqrt{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx}( {sin}^{ - 1}x -  {sin}^{ - 1} \sqrt{x})

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{d}{dx}{sin}^{ - 1}x - \dfrac{d}{dx}{sin}^{ - 1} \sqrt{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  - \dfrac{1}{ \sqrt{1 -  {( \sqrt{x} )}^{2} } }\dfrac{d}{dx} \sqrt{x}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  \tt \: \dfrac{d}{dx} {sin}^{ - 1}x = \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  - \dfrac{1}{ \sqrt{1 -  x} } \times \dfrac{1}{2 \sqrt{x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  \tt \: \dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} } \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  - \dfrac{1}{2 \:  \sqrt{x} \: \sqrt{1 -  x} }

Additional information :-

 \red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}k = 0}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {tan}^{ - 1}x =  \dfrac{1}{1 +  {x}^{2} } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cot}^{ - 1}x =  \dfrac{ -  \: 1}{1 +  {x}^{2} } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cos}^{ - 1}x =  \dfrac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1}x =  \dfrac{ -  \: 1}{ x \: \sqrt{{x}^{2}  - 1} } }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sec}^{ - 1}x =  \dfrac{ \: 1}{ x \: \sqrt{{x}^{2}  - 1} } }

Similar questions