Math, asked by SSaaonee, 1 year ago

if y= (sin x/2 + cos x/2)^2 then find dy/dx at x=π/6

Answers

Answered by max20
20
hope u get the solution
Attachments:
Answered by Anonymous
18

The answer is  \frac{\sqrt{3}}{2} .

Step-by-step explanation:

Given:

 \rightarrow \: y =  {( \sin( \frac{x}{2} ) +  \cos( \frac{x}{2} )  )}^{2}  \\  \rightarrow \: y =  { \sin }^{2} ( \frac{x}{2} )  +  { \cos }^{2} ( \frac{x}{2} )  + 2 \sin( \frac{x}{2} )  \cos( \frac{x}{2} )  \\  \rightarrow \: y = 1 +  \sin(x)

On differentiating on both side with respect to x,

\rightarrow \: \frac{\mathrm{d} y}{\mathrm{d} x}  = \frac{\mathrm{d} }{\mathrm{d} x}(1 +  \sin(x)  ) \\ \rightarrow \: \frac{\mathrm{d} y}{\mathrm{d} x}  = \frac{\mathrm{d} }{\mathrm{d} x}  \sin(x)   \\ \rightarrow \: \frac{\mathrm{d} y}{\mathrm{d} x}  = \cos(x)  \\  \: \frac{\mathrm{d} y}{\mathrm{d} x} \: at \: x  \rightarrow \frac{\pi}{6}  =  \cos( \frac{\pi}{6} )  =  \frac{ \sqrt{3} }{2}

The answer is  \frac{\sqrt{3}}{2}

Similar questions