Math, asked by Anonymous, 1 year ago

If y sin φ = x sin ( 2 θ + φ ) .

Then show that :

( x + y ) cot ( θ + φ ) = ( y . x ) cot θ

Answers

Answered by Anonymous
18

Correct Questions:

If y sin φ = x sin ( 2 θ + φ ) .

Then show that :

( x + y ) cot ( θ + φ ) = ( y - x ) cot φ

Proof:

For convenience, let's denote

φ as ß and θ as α

Given,

y \sin(  \beta  )  = x \sin(2 \alpha +  \beta  )

 =  >  \frac{x}{y}  =  \frac{ \sin( \ \beta  ) }{ \sin(2 \alpha  +  \beta ) }

Applying Componendo and dividendo,

we get,

 =  >  \frac{x  + y}{x - y}  =  \frac{ \sin(  \beta  )  +  \sin(2 \alpha +  \beta  ) }{ \sin(  \beta  )  -  \sin(2 \alpha  +  \beta ) }  \\  \\

 =  \frac{2 \sin( \frac{2 \alpha  + 2 \beta }{2} ) \cos (\frac{ \beta  - 2 \alpha  -  \beta }{2} ) }{2 \cos (\frac{2 \alpha  + 2 \beta }{2} ) \sin( \frac{ \beta  - 2 \alpha  -  \beta }{2} )  }  \\  \\  =  -  \frac{ \cot( \beta ) }{ \cot( \alpha  +  \beta ) }

Therefore,

 =  >  \frac{x + y}{x - y}  =  -  \frac{ \cot( \beta ) }{ \cot( \alpha  +  \beta ) }  \\  \\  =  >  {(x + y)}{ \cot( \alpha  +  \beta ) }  = (y - x) \cot( \beta )

=> ( x + y ) cot ( θ + φ ) = ( y - x ) cot φ

Hence, proved

\bold\red{Concepts\:Used:}

1. By componendo and Dividendo,

if,  \frac{a}{b}  =  \frac{x}{y}

then,  \frac{a + b}{a - b}  =  \frac{x + y}{x - y}

2.  \sin( \alpha )  +  \sin( \beta )  = 2 \sin( \frac{ \alpha  +  \beta }{2} )  \cos(  \frac{ \alpha  -  \beta }{2} )

3.  \sin( \alpha )  -  \sin( \beta )  = 2 \cos( \frac{ \alpha  +  \beta }{2} ) \sin( \frac{ \alpha  -  \beta }{2} )

Answered by Anonymous
8

Step- by - step explanation:-

According to the question→

y \: sin \phi \:  = x \: sin \: (2 \theta +  \phi) \\  \\  \frac{y}{x}  =  \frac{sin \: (2 \theta +  \phi)}{sin \phi}  \\  \\

using componendo and dividendo rule

Is

 \implies \:  \frac{x}{y}  =  \frac{a}{b}  \\   \implies \:  \frac{x + y}{x - y}  =  \frac{a + b}{a - b}

  \frac{y + x}{y - x}  =  \frac{sin(2 \theta +  \phi) + sin \phi}{sin(2 \theta  +  \phi) - sin \phi}  \\  \\

Using formula→

 \star \: sin \: c \:  + sin \: d = 2sin \frac{c + d}{2} cos \:  \frac{c - d}{2}  \\  \\  \star \: sin \: c \:  - sin \: d = 2cos \:  \frac{c + d}{2} sin \frac{c - d}{2}  \\  \\  \therefore \\  \\  \frac{y + x}{y - x}  =  \frac{2sin( \theta +  \phi).cos \theta}{2cos( \theta +  \phi).sin \phi} \\  \\  \frac{y + x}{y - x}  =  \frac{tan ( \theta +  \phi)}{tan \phi}  \\  \\ (x + y).tan \phi = (y - x)tan( \theta +  \phi) \\  \\  \boxed{(x + y)cot ( \theta +  \phi) = (y - x)cot \phi} \\  \\

Hence proved.

Similar questions
Math, 6 months ago