Math, asked by LOKESHADITH1717, 3 months ago

if y = (sin x)^x + sin^-1 x - 2^sinx, find dy/dx

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {(sinx)}^{x}  +  {sin}^{ - 1}x  -  {2}^{sinx}

\rm :\longmapsto\:Let \: y \:  =  \: u + v + w -  - (1)

where,

 \red{\rm :\longmapsto\: \:u =  {(sinx)}^{x}  }  \\ \red{\rm :\longmapsto\: \:v =  {sin}^{ - 1}x} \\  \red{\rm :\longmapsto\: \: w =  {2}^{sinx} } \:  \:  \:

On differentiating equation (1), w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}u + \dfrac{d}{dx}v + \dfrac{d}{dx}w

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} + \dfrac{dw}{dx}  -  -  - (2)

Now,.

Consider,

\rm :\longmapsto\:u =  {(sinx)}^{x}

☆ On taking log both sides, we get

\rm :\longmapsto\:logu = log {(sinx)}^{x}

\rm :\longmapsto\:logu =x \:  log {(sinx)}

\red{\bigg \{ \because \:log {x}^{y}  = y \: logx \bigg \}}

☆ On differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logu =\dfrac{d}{dx}x \:  log {(sinx)}

\rm :\longmapsto\:\dfrac{1}{u} \dfrac{du}{dx} =x\dfrac{d}{dx}\:  log {(sinx)} + log \: sinx \: \dfrac{d}{dx}x

\red{\bigg \{ \because \:\dfrac{d}{dx}logx = \dfrac{1}{x}  \bigg \}} \\ \red{\bigg \{ \because \: \dfrac{d}{dx}u.v = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u\bigg \}}

\rm :\longmapsto\:\dfrac{1}{u} \dfrac{du}{dx} =x \: \dfrac{1}{sinx} \:  \dfrac{d}{dx}sinx + log \: sinx \:

\red{\bigg \{ \because \:\dfrac{d}{dx}x = 1 \bigg \}}

\rm :\longmapsto\:\dfrac{1}{u} \dfrac{du}{dx} =x \: \dfrac{1}{sinx} \:  cosx + log \: sinx \:

\red{\bigg \{ \because \:\dfrac{d}{dx}sinx = cosx \bigg \}}

\rm :\longmapsto\:\dfrac{du}{dx} = u\bigg(x \: cotx \:  +  \: log \: sinx\bigg)

\bf\implies \:\:\dfrac{du}{dx} =  {(sinx)}^{x} \bigg(x \: cotx \:  +  \: log \: sinx\bigg) -  - (3)

Consider,

\rm :\longmapsto\:v =  {sin}^{ - 1} x

☆ On differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}v = \dfrac{d}{dx} {sin}^{ - 1} x

\bf\implies \:\:\dfrac{dv}{dx}= \dfrac{1}{ \sqrt{1 -  {x}^{2} } } -  -  - (4)

Consider,

\rm :\longmapsto\:w =  {2}^{sinx}

☆ On differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}w = \dfrac{d}{dx} {2}^{sinx}

\rm :\longmapsto\:\dfrac{dw}{dx} = {2}^{sinx}log2 \: \dfrac{d}{dx}sinx

\red{\bigg \{ \because \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)  \bigg \}}

\rm :\longmapsto\:\dfrac{dw}{dx} = {2}^{sinx}log2 \: cosx

\bf\implies \:\dfrac{dw}{dx} =  {2}^{sinx} \: cosx \: log2 -  -  - (5)

On substituting all the values from equation (3),(4),(5) in equation (2), we get

 {\rm :\mapsto\:\dfrac{dy}{dx} = {(sinx)}^{x} \bigg(x \: cotx \:  +  \: log \: sinx\bigg) + \dfrac{1}{ \sqrt{1 -  {x}^{2}}}  +  {2}^{sinx} \: cosx \: log2}

Additional Information :-

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}x = 1}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}logx =  \dfrac{1}{x} }

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}sinx = cosx}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}cosx =  - sinx}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}tanx =   {sec}^{2} x}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}cotx =   { - cosec}^{2} x}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}secx = secx \: tanx}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx} {sin}^{ - 1} x = \dfrac{1}{ \sqrt{1 -  {x}^{2} } } }

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx} {cos}^{ - 1} x = \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } } }

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} } }

 \red{\rm :\longmapsto\: \: \dfrac{d}{dx} {cot}^{ - 1}x = \dfrac{ - 1}{1 +  {x}^{2} } }

Similar questions