Physics, asked by skbrothers1232, 3 months ago

If y = sin x², then dy/ dx using chain rule is​

Answers

Answered by SugarCrash
60

Answer :

Derivative of (sin x)² = Sin2x

Solution :

‌Using chain rule :

‌Let y = sinx²

‌\sf \dfrac{d}{dx}sin^2 x \times \dfrac{d}{dx}sinx

‌We know that,

‌\sf \: Derivative \: of \:\boxed{\sf \color{red} x^n = n.x^{n-1}}

‌\sf \: Derivative \: of \:\boxed{\sf \color{red} sin x = cos x}

‌Applying this here, we got :

 \sf 2sin^{2-1} \times cos x \\ \\ \implies\sf 2sin x cos x

we know that,

\red\bigstar\boxed{\sf 2sinxcox=Sin2x}

So,

\implies\sf \underline{\boxed{\bf\pink{ \sin 2x}}}

Hence,

Derivative of (sinx)² or sin²x is sin2x .

━━━━━━━━━━━

More to know :

  • \sf\dfrac{d}{dy}tan x = sec^2 x

  • \sf\dfrac{d}{dy}cosec x = -cosec x.cotx

  • \sf\dfrac{d}{dy}sec x = tan x.sec x

  • \sf\dfrac{d}{dy}cot x = -cosec^2 x

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions