Math, asked by Rabie5297, 9 months ago

If y=sin5x, show that d²y/dx²+25=0

Answers

Answered by rishu6845
5

Correct question---->

if \: y \:  = sin5x \:  \\ show \: that \:  \:   \\ \dfrac{ {d}^{2}y }{d {x}^{2} }  + 25y \:  = 0

Concept used ---->

1)

first \: order \: derivative \:  =  \dfrac{dy}{dx}  \\ second \: derivative \:  =  \dfrac{ {d}^{2}y }{d {x}^{2} }

2)

 \dfrac{d}{dx}  \:(sinx)  = cosx \\  \dfrac{d}{dx}  \: (cosx) =  - sinx \\  \dfrac{d}{dx} (x) = 1

Solution--->

y \:  = sin5x

differentiating \: with \: respect \: to \: x

 =  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} (sin5x)

 =  >  \dfrac{dy}{dx}  \:  = cos5x \:  \dfrac{d}{dx} (5x)

 =  >  \dfrac{dy}{dx}  \:  = cos5x \: ( \: 5 \: )

 =  >  \dfrac{dy}{dx}  \:  = 5 \: cos5x

differentiating \: with \: respect \: to \: x \:

 =  >  \dfrac{d}{dx} ( \dfrac{dy}{dx} ) \:  = 5 \:  \dfrac{d}{dx}  \: ( \: cos5x \: )

 =  >  \dfrac{d ^{2} y}{dx^{2} }  \:  = 5 \: ( - sin5x \: ) \:  \dfrac{d}{dx} (5x)

 =  >  \dfrac{d ^{2}y }{d {x}^{2} }  \:  =  - 5  \: sin5x \: ( \: 5 \: )

 =  >  \dfrac{ {d}^{2}y }{d {x}^{2} }  =  - 25 \: sin5x

 =  >  \dfrac{ {d}^{2} y}{d {x}^{2} }  \:  =  - 25 \: y

 =  >  \dfrac{ {d}^{2}y }{d {x}^{2} } \:  +  \: 25 \: y \:  =  \: 0

Answered by Anonymous
0

\huge\boxed{\fcolorbox{orange}{orange}{Answer}}

Attachments:
Similar questions