Physics, asked by dixitkrashnika, 11 months ago

if y = sine @ + root3 cos@, then the maximum value of
y is
(1) 1
(2) 4
(3) 2
(4) 3​

Answers

Answered by hukam0685
23

Answer:

Maximum value of y = 2

Explanation:

I think you want to ask that

y = sin \:  \theta +  \sqrt{3} \:cos \:  \theta \\  \\

than find the maximum value of y

To solve this,multiply and divide eq by 2

y =2( \frac{1}{2}  sin \:  \theta +   \frac{ \sqrt{3} }{2}  cos \:  \theta) \\  \\ y = 2(cos \: 60° \: sin \: \theta + sin \: 60° \: cos \: \theta) \\  \\ y = 2 \: sin(60° +  \theta) \\

Now to find the maximum value of y,differentiate both side by theta

 \frac{dy}{d \theta}  = 2cos(60° +  \theta) \\  \\ 2cos(60° +  \theta) = 0 \\  \\ cos(60° +  \theta) =0 \\  \\ 60° + \theta =  {cos}^{ - 1} (0) \\  \\ 60° + \theta = 90° \\  \\ \theta = 30° \\  \\

Maxima present on 30°,put the value of theta,to find the maximum value

y = sin \: 30° +  \sqrt{3} cos \: 30° \\  \\  =  \frac{1}{2}  +  \sqrt{3}  \times  \frac{ \sqrt{3} }{2}  \\  \\  =  \frac{1}{2}  +  \frac{3}{2}  \\  \\  =  \frac{4}{2}  \\  \\  y= 2 \\  \\

Option 3 is correct.

Hope it helps you.

Answered by llBestFriendsll
0

Answer:

maximum value of Y is = 2

Similar questions