Math, asked by sunitavidushi26, 5 hours ago

if y=(sinx)^tanx + (cosx)^secx , find dy/dx

Answers

Answered by Anonymous
0

y = ( \sin \: x)  {}^{ \tan \: x }  + ( \cos \: x)  {}^{ \sec\:x }  \\ let \: 4 = ( \sin \: x) {}^{ \tan \: x }  \\ y = u + y \:  \:  \:  \:  \frac{dy}{dx}  =  \frac{du}{dx}  +  \frac{dv}{dx}   \\ u = ( \sin \: x) {}^{ \tan \: x }  \:  \:  logu=  \tan \: x \times  log \:  \sin \: x \\  \frac{1}{u} \times  \frac{du}{dx}  =  \sec {}^{2} x \times  log \:  \sin \: x +  \tan \: x \times  \frac{1}{ \sin \: x \times  \cos \: x  }  \\  \frac{du}{dx}  = ( \sin \: x) {}^{ \tan \: x } [ \sec   ^{2} x \times  log \:  \sin \: x + 1  ]

[ log \:  \cos \: x - 1  ]

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Similar questions