Math, asked by prabhashankargowdams, 7 months ago

if y+siny=cosx find Dy/dx​

Answers

Answered by Anonymous
3

Step-by-step explanation:

so the answer is -sinx/(1+cosy)

Attachments:
Answered by anindyaadhikari13
3

Question:-

If \sf y+ \sin(y)=\cos(x), find dy/dx.

Solution:-

Given,

 \sf y +  \sin(y)  =  \cos(x)

Differentiating both side by x,

 \sf \frac{dy}{dx}  +  \frac{d( \sin(y) )}{dx}  =  \frac{d( \cos(x)) }{dx}

 \sf \implies \frac{dy}{dx}  +  \frac{d( \sin(y) )}{dx}  = -  \sin(x) (As cos(x)'= -sin(x))

 \sf \implies \frac{dy}{dx}  +  \frac{d( \sin(y) )}{dy} \times  \frac{dy}{dx}   = -  \sin(x)

 \sf \implies \frac{dy}{dx}  +   \cos(y)\frac{dy}{dx}   = -  \sin(x) (As sin(x)'=cos x)

 \sf \implies \frac{dy}{dx}(1  +   \cos(y))  = -  \sin(x)

 \sf \implies \frac{dy}{dx} =  \frac{ -  \sin(x) }{1  +   \cos(y)}

Hence,

 \boxed{ \sf  \frac{dy}{dx} =  \frac{ -  \sin(x) }{1  +   \cos(y)} }

Similar questions