Math, asked by krishna11k1, 1 year ago

If y=sqrt((1-cos4x)/(1+cos4x)) then prove that (dy)/(dx)=2sec^(2)(2x)​

Answers

Answered by MaheswariS
9

\underline{\textsf{Given:}}

\mathsf{y=\displaystyle\sqrt{\dfrac{1-cos4x}{1+cos4x}}}

\underline{\textsf{To prove:}}

\mathsf{\dfrac{dy}{dx}=2\,sec^22x}

\underline{\textsf{Solution:}}

\textsf{First we simplify the given function by using}

\textsf{suitable trigonometric identities}

\textsf{Consider,}

\mathsf{y=\displaystyle\sqrt{\dfrac{1-cos4x}{1+cos4x}}}

\mathsf{y=\displaystyle\sqrt{\dfrac{1-cos2(2x)}{1+cos2(2x)}}}

\textsf{Using,}

\boxed{\mathsf{cos2A=1-2\,sin^2A=2\,cos^2A-1}}

\mathsf{y=\displaystyle\sqrt{\dfrac{1-(1-2\,sin^22x)}{1+(2\,cos^22x-1)}}}

\mathsf{y=\displaystyle\sqrt{\dfrac{2\,sin^22x}{2\,cos^22x}}}

\mathsf{y=\displaystyle\sqrt{\dfrac{sin^22x}{cos^22x}}}

\mathsf{y=\displaystyle\sqrt{tan^22x}}

\mathsf{y=tan2x}

\textsf{Now, differentiate y with respect to x by using chain rule}

\mathsf{\dfrac{dy}{dx}=sec^22x\,\dfrac{d(2x)}{dx}}

\mathsf{\dfrac{dy}{dx}=sec^22x\,(2)}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=2\,sec^22x}}

Find more:

If y=e^2x (ax+b), then prove that d^2 y/dx^2 -4 dy/dx+4y=0

https://brainly.in/question/19674230

Similar questions