Math, asked by bhumikajindal770, 20 days ago

If y sqrt(1 + x) + x sqrt(1 + y) = 0, prove that dy/dx = - 1/(1+x)^2

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given that,

\rm \: y \sqrt{1 + x} + x \sqrt{1 + y} = 0

[ First of all, to simply this question, we assume that x and y are not equal, otherwise we have nothing to prove. ]

Now, above expression can be rewritten as

\rm \: y \sqrt{1 + x} \:  =  -  \:  x \sqrt{1 + y}

On squaring both sides, we get

\rm \:  {y}^{2}(1 + x) =  {x}^{2}(1 + y)

\rm \:  {y}^{2} + x {y}^{2}  =  {x}^{2} + y {x}^{2}

\rm \:  {y}^{2} + x {y}^{2} - {x}^{2}  - y {x}^{2}  = 0

can be re grouped as

\rm \:  ({y}^{2} -  {x}^{2}) + (x {y}^{2}  - y {x}^{2})  = 0

\rm \: (y + x)(y - x) + xy(y - x) = 0

\rm \: (y - x)(y + x + xy) = 0

\rm \: x + y + xy = 0 \:  \:  \:  \{as \: y - x \:  \ne \: 0 \}

can be further rewritten as

\rm \: y(1 + x) =  - x

\rm\implies \:y =  - \dfrac{x}{x + 1}

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{dy}{dx}  =  -  \dfrac{d}{dx}\dfrac{x}{x + 1}

We know,

\boxed{\tt{  \dfrac{d}{dx} \frac{u}{v} =  \frac{v \dfrac{d}{dx}u \:  -  \: u \dfrac{d}{dx}v}{ {v}^{2} } \: }} \\

So, using this result, we get

\rm \:  \dfrac{dy}{dx} =  -  \: \dfrac{(x + 1) \dfrac{d}{dx}x - x \dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} }

We know

\boxed{\tt{  \dfrac{d}{dx}x = 1 \: }} \\

and

\boxed{\tt{  \dfrac{d}{dx}k = 0 \: }} \\

So, using these results, we get

\rm \:  \dfrac{dy}{dx} =  -  \: \dfrac{(x + 1) (1) - x (1+ 0)}{ {(x + 1)}^{2} }

 \rm \: \dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{x + 1 - x}{ {(x + 1)}^{2} }

\rm\implies \: \rm \: \dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{1}{ {(x + 1)}^{2} }

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by TheBestWriter
0

Question,

If y sqrt(1 + x) + x sqrt(1 + y) = 0, prove that dy/dx = - 1/(1+x)^2

Solution,

Given

= y√1+x +x √ 1+y = 0

Here (x) and (y) are not equal.

Now,

= y √1+x = x√1+y

Squaring both side ,we get

= y² (1+x) = x² (1+y)

= y² + xy² = x² + yx²

= y² + xy² - x² yx² = 0

= (y² - x²) + (xy² - yx²) = 0

= (y+x) (y-x) + xy(y-x) = 0

= (y-x) - (y+x+xy) = 0

= x+y+xy = 0 [ °•° Here y-x 0 ]

On differentiation both sides [w.r.t.x] we get

= dy/dx = d/dx - x/x+1

We know

= d/dx x = 1 and d/dx k = 0

Now,

= dy/dx = (x+1)(1) -x (1+0)/(x+1)²

= dy/dx = x+1-x/(x+1)²

dy/dx = - 1/(x+1)²

Similar questions