Math, asked by VivekKaranjekar, 1 year ago

If y=square root of sin x, find dy/dx​

Answers

Answered by Sharad001
77

Question :-

 \sf \red{ if \: y =  \sqrt{ \sin x} } \green{ \:   ,  \: then \: find \:  \frac{dy}{dx} } \\

Answer :-

 \implies\sf \boxed{  \sf \green{\leadsto } \: \red{  \frac{dy}{dx} }=  \blue{ \frac{ \cos x}{2 \sqrt{ \sin x} }}  } \:

Solution :-

We have ,

 \leadsto \sf \red{ y =} \purple{  \sqrt{ \sin x} } \\  \\  \bf squaring \: on \: both \: sides \:  \\  \\  \leadsto \sf \green{{y}^{2}  = } \pink{ {( \sqrt{ \sin x} )}^{2} } \\  \\  \leadsto \sf \purple{  {y}^{2} } =  \orange{ \sin x} \\  \\ \bf differentiate \: with \: respect \: to \: x \\  \\  \leadsto \sf \orange{ \frac{d}{dx} \:  {y}^{2}   }=   \green{\frac{d}{dx}  \sin x} \\  \\ \because \:  \sf \blue{  \frac{d}{x}  \: } {x}^{n}  = \red{ n \:  {x}^{n - 1} } \:  \:  ,  \green{ \frac{d}{dx}  \sin x =  }\cos x \\  \\  \therefore \\  \leadsto \sf \:  \orange{2y \: \frac{dy}{dx} }=  \cos x  \\  \\   \leadsto \sf \red{  \frac{dy}{dx} } =   \green{\frac{ \cos x}{2y} } \\  \\  \because \sf \: y =  \sqrt{ \sin x}  \\  \\  \sf \boxed{  \sf \green{\leadsto } \: \red{  \frac{dy}{dx} }=  \blue{ \frac{ \cos x}{2 \sqrt{ \sin x} }}  }

_________________

Hope it helps you .

Answered by Qwrome
0

If y=\sqrt{sinx} then \frac{dy}{dx} is   \frac{dy}{dx} = \frac{cosx}{2\sqrt{sinx}}

Given:

y=square root of sin x that is y=\sqrt{sinx}.

To find:

\frac{dy}{dx}

Solution:

y=\sqrt{sinx}

Squaring both sides we get,

y^{2} =(\sqrt{sinx} )^2

y^{2} =sinx

Now differentiate above with respect to x we get:

2y\frac{dy}{dx} = cosx       ...(using identity \frac{d}{dx} x^{n} =n x^{n-1} and \frac{d}{dx} sinx=cosx)

\frac{dy}{dx} = \frac{cosx}{2y}

As y=\sqrt{sinx}  we will put this in the above equation,

\frac{dy}{dx} = \frac{cosx}{2\sqrt{sinx}}

Hence, If y=\sqrt{sinx} then \frac{dy}{dx} is   \frac{dy}{dx} = \frac{cosx}{2\sqrt{sinx}}.

#SPJ2

Similar questions