Math, asked by ajaykumarshukla4355, 1 year ago

If y(t) is a solution of (1+t)dydt−ty=1 and y(0)=−1, then show that y(1)=−12

Answers

Answered by wasifthegreat786
0

Answer:

Step-by-step explanation:

If y(t) is a solution of (1+t) dy/dx - ty = 1 and y(0) = -1, then show that y(1) = -1/2 .

Answered by Anonymous
114

\red\bigstarQUESTION (CORRECTION):-

If y(t) is a solution of

 \sf  (t +1) \dfrac{dy}{dt} - ty  = 1 \: and \: y(0) =  - 1

Then show that y(1)=-1/2

\blue\bigstarSOLUTION:-

•Given differential equation is

⠀⠀⠀⠀⠀⠀

\sf \green{\bigstar}(t +1) \dfrac{dy}{dt} - ty  = 1 ......(1)

⠀⠀⠀⠀⠀

 \sf \: or  \: \dfrac{dy}{dt}  -  \bigg( \dfrac{t}{1 + t}  \bigg)y =  \dfrac{1}{1 + t}

⠀⠀⠀⠀⠀⠀

\sf I.F=e^{ \displaystyle \sf \int\dfrac{-t}{1+t}dt}=e^{ \displaystyle \sf \int\bigg(-1+\dfrac{-t}{1+t}dt \bigg)}

⠀⠀⠀⠀⠀⠀

 \sf = e^{ - t + log(1 + t)}

⠀⠀⠀⠀⠀⠀

 \sf = e^{ - t} e^{log(1+ t)} = e^{ - t}(1 + t)

⠀⠀⠀⠀⠀⠀

Hence,the solution of the given differential equation is given by

⠀⠀⠀⠀⠀⠀

 \sf ye^{ - t}(1+ t)=  \displaystyle \sf \int \dfrac{{e}^{ - t}(1 + t) }{1 + t} dt

⠀⠀⠀⠀⠀⠀

 \sf or\:\sf ye^{ - t}(1+ t)= \dfrac{{e}^{ - t} }{ - 1}  + C......(2)

⠀⠀⠀⠀⠀⠀

 \sf As  \:  \blue{ y(0)=-1},therefore,  \pink{y=-1},when  \: t=0

⠀⠀⠀⠀⠀⠀

 \sf - 1 {e}^{0} (1 + 0) =  \dfrac{ {e}^{ - 0} }{ - 1}  + C

⠀⠀⠀⠀⠀⠀

 \sf \implies - 1 =  - 1 + C

⠀⠀⠀⠀⠀⠀

  \sf \implies C=0

⠀⠀⠀⠀⠀⠀

Hence,from (2),we get

⠀⠀⠀⠀⠀⠀

 \sf ye^{ - t}(1+ t)=   \dfrac{ {e}^{ - t} }{ - 1}

⠀⠀⠀⠀⠀⠀

 \sf y =   - \dfrac{1}{(1 + t)}

⠀⠀⠀⠀⠀⠀

 \sf \: When \: t = 1,then \: y=\dfrac{1}{1 + 1} = -\dfrac{1}{2}

⠀⠀⠀⠀⠀⠀

 \boxed{ \blue { \sf\therefore \: y(1) = -   \dfrac{1}{2} }}

Similar questions