Math, asked by hk2142356, 1 year ago

If y=tan^-1 1+x²/1-x² then find dy/dx=? ​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{y=tan^{-1}\left(\dfrac{1+x^2}{1-x^2}\right)}

\underline{\textbf{To find:}}

\mathsf{\dfrac{dy}{dx}}

\underline{\textbf{Solution:}}

\textsf{We apply chain rule to find the derivative}

\mathsf{Consider,}

\mathsf{y=tan^{-1}\left(\dfrac{1+x^2}{1-x^2}\right)}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+\left(\dfrac{1+x^2}{1-x^2}\right)^2}\;\dfrac{d\left(\dfrac{1+x^2}{1-x^2}\right)}{dx}}

\mathsf{\dfrac{dy}{dx}=\dfrac{(1-x^2)^2}{(1-x^2)^2+(1+x^2)^2}\;\left(\dfrac{(1-x^2)2x-(1+x^2)(-2x)}{(1-x^2)^2}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{(1-x^2)^2}{(1-x^2)^2+(1+x^2)^2}\;\left(\dfrac{(1-x^2)2x+(1+x^2)(2x)}{(1-x^2)^2}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{(1-x^2)^2+(1+x^2)^2}\;\left(\dfrac{2x(1-x^2+1+x^2)}{1}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{(1-x^2)^2+(1+x^2)^2}\;(2x(2))}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+x^4-2x^2+1+x^4+2x^2}\;(4x)}

\mathsf{\dfrac{dy}{dx}=\dfrac{4x}{2+2x^4}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{2x}{1+x^4}}}

\underline{\textbf{Find more:}}

If y = tan-1(6x-7/6+7x)

then dy/dx is

​https://brainly.in/question/36894600  

Answered by mad210220
0

Given :  

           \tan x^-11 +\frac{x^{2} }{1-x^2}

Find :

            \frac{dy}{dx} = \frac{\partial \left ( tanx^-11+\frac{x^2}{1-x^2} \right )}{\partial x}

Step-by-step explanation:

\frac{dy}{dx} =  \frac{\partial \left ( tanx^-11+\frac{x^2}{1-x^2} \right )}{\partial x}

By the rule of addition of derivative,

\frac{dy}{dx} = \frac{\partial \left ( tanx^-11 \right )}{\partial x}+\frac{\partial \left ( \frac{x^2}{1-x^2} \right )}{\partial x}

\frac{dy}{dx} = nx^(-11-1)sec^2x^(-11) + \frac{[(1-x^2)*2x]-[(x^2)*(-2x)]}{(1-x^2)^2}

∵    tanx^n dx = nx^(n-1)sec^2x^n &

     by the rule of division of deritative,

      \frac{\partial [\frac{y}{x}]}{\partial x} = \frac{y*\frac{dx}{dy} - x*\frac{dy}{dx} }{ x^2}

∴by solving above equation we get,

\frac{dy}{dx} = nx^(-12)sec^2x^2(-11) + \frac{2x-2x^3+2x^3}{(1+x^2)^2}

\frac{dy}{dx} =  nx^(-12)sec^2x^(-11) + \frac{2}{(1+x^2)^2}

Final ans:

\frac{dy}{dx} = nx^(-12)sec^2x^(-11) + \frac{2}{(1+x^2)^2}

Similar questions