Math, asked by nayanagbiradar, 6 months ago

If y=〖tan^(-1) (〗⁡〖(5x-4)/(5+4x)〗) then dy/dx =………..​

Answers

Answered by senboni123456
9

Step-by-step explanation:

We have,

y =  \tan^ {- 1} ( \frac{5x - 4}{5 + 4x} )  \\

Differentiating both sides w.r.t x, we have,

 \frac{dy}{dx}  =  \frac{1}{1 +  (\frac{5x - 4}{5 + 4x})^{2} } \times  \frac{5(5 + 4x) - 4(5x - 4)}{(5 + 4x)^{2} }  \\

 =  >  \frac{dy}{dx}  =  \frac{(5 + 4x)^{2} }{ {(5 + 4x)}^{2}  +  {(5x - 4)}^{2} }  \times  \frac{25 + 20x - 20x + 16}{ {(5 + 4x)}^{2} }  \\

 =  >  \frac{dy}{dx}  =  \frac{41}{41( {x}^{2}  + 1)}  \\

 =  >  \frac{dy}{dx}  =  \frac{1}{ {x}^{2} + 1 }  \\

Similar questions