Math, asked by khush1067, 2 months ago

If y = tan-1(6x-7/6+7x)
then dy/dx is

Answers

Answered by MaheswariS
12

\textbf{Given:}

\mathsf{y=tan^{-1}\left(\dfrac{6x-7}{6+7x}\right)}

\textbf{To find:}

\mathsf{\dfrac{dy}{dx}}

\textbf{Solution:}

\textsf{We apply chain rule to find derivative of the given function}

\mathsf{Consider,}

\mathsf{y=tan^{-1}\left(\dfrac{6x-7}{6+7x}\right)}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+\left(\dfrac{6x-7}{6+7x}\right)^2}\;\left(\dfrac{(6+7x)6-(6x-7)7}{(6+7x)^2}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{(6+7x)^2}{(6+7x)^2+(6x-7)^2}\;\left(\dfrac{36+42x-42x+49}{(6+7x)^2}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{(6+7x)^2}{(6+7x)^2+(6x-7)^2}\;\left(\dfrac{85}{(6+7x)^2}\right)}

\mathsf{\dfrac{dy}{dx}=\dfrac{85}{(6+7x)^2+(6x-7)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{85}{36+49x^2+84x+36x^2+49-84x}}

\mathsf{\dfrac{dy}{dx}=\dfrac{85}{36+49x^2+36x^2+49}}

\mathsf{\dfrac{dy}{dx}=\dfrac{85}{85+85x^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{85}{85(1+x^2)}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+x^2}}}

\textbf{Find more:}

If y=e^2x (ax+b), then prove that d^2 y/dx^2 -4 dy/dx+4y=0

https://brainly.in/question/19674230

Similar questions