Math, asked by umarbojhgar, 9 months ago

If y=(tan-1x)^2 then prove that (1+x^2)^2 you + 2x ( 1+x^2) y1=2​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow y=(\tan^{-1}x)^2

Differentiating wrt x,

\longrightarrow y'=((\tan^{-1}x)^2)'

\longrightarrow y'=\dfrac{2\tan^{-1}x}{1+x^2}

\longrightarrow (1+x^2)\,y'=2\tan^{-1}x

Again differentiating wrt x,

\longrightarrow ((1+x^2)\,y')'=(2\tan^{-1}x)'

\longrightarrow (1+x^2)\,y''+2xy'=\dfrac{2}{1+x^2}

\longrightarrow (1+x^2)\left[(1+x^2)\,y''+2xy'\right]=2

\longrightarrow\underline{\underline{(1+x^2)^2\,y''+2x(1+x^2)y'=2}}

Hence Proved!

Similar questions