Math, asked by pandian6939gmailcom, 10 months ago

if y=tan^-1x, show that (1+x^2)y''+(2x-1)y'=0​

Answers

Answered by Sharad001
137

Question :-

 \sf if \: y =  { \tan}^{ - 1} x  \\ \sf show \: that \: (1 +  {x}^{2} )y'' +( 2x  -  1)y' = 0 \\

Proof :-

Used formula :-

 \star  \: \sf{ \frac{d}{dx} ( { \tan}^{ - 1} x) =  \frac{1}{1 +  {x}^{2} }  }\\

Explanation :-

Here y' means differentiate of y with respect to x and y'' means double differentiation of y

 \star \:  \sf  \frac{dy}{dx}  = y' \\  \\  \star \:  \sf \:  \frac{ {d}^{2}y }{d {x}^{2} }  = y''

firstly we will find y' and y''

 \to  \sf\: y =  { \tan}^{ - 1} x \\ \bf differentiate \: it \:  \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{1}{1 +  {x}^{2} }  \\  \\  \sf again \: differentiate \:  \: it \\  \\  \to \sf  \frac{ {d}^{2}y }{d {x}^{2} }   =  \frac{ - 1(2x)}{ {(1 +  {x}^{2}) }^{2} }  \\

Now taking which we will prove

 \to  \sf (1 +  {x}^{2} )y'' +( 2x + 1)y' = 0 \\ \:  \\  \to \sf (1 +  {x}^{2})  \frac{ - 2x}{  {(1 +  {x}^{2}) }^{2} }  + (2x  - 1) \frac{1}{1 +  {x}^{2} }  \\  \\  \to \sf\frac{ - 2x}{1 +  {x}^{2} }  +  \frac{2x - 1}{1 +  {x}^{2} }  \\  \\  \to \:  \sf \frac{ - 2x + 2x - 1}{1 +  {x}^{2} }  \\  \\  \to \: \sf   \frac{ - 1}{1 +  {x}^{2} }

Hey mate please recheck your question that is the answer of your question.

Similar questions