Math, asked by irshadahmad5361, 1 month ago

If y= tan inverse (√1+x2-1/x) or z= tan inverse (2x/1+x2) then dy/dz?

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \sqrt{1 +  {x}^{2}} - 1 }{x}

and

\rm :\longmapsto\:z =  {tan}^{ - 1}\dfrac{2x}{1 + {x}^{2} }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{dz}{dy}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \sqrt{1 +  {x}^{2}} - 1 }{x}

\red{\rm :\longmapsto\:Put \: x \:  = tana \: so \: that \: a =  {tan}^{ - 1}x}

So, given function can be rewritten as

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \sqrt{1 +  {tan}^{2}a} - 1 }{tana}

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \sqrt{{sec}^{2}a} - 1 }{tana}

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ seca - 1 }{tana}

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \dfrac{1}{cosa}  - 1 }{\dfrac{sina}{cosa} }

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{ \dfrac{1 - cosa}{cosa}}{\dfrac{sina}{cosa} }

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{1 - cosa}{sina}

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{2 {sin}^{2} \dfrac{a}{2} }{2sin\dfrac{a}{2}cos\dfrac{a}{2} }

\rm :\longmapsto\:y  =  {tan}^{ - 1}\dfrac{{sin}\dfrac{a}{2} }{cos\dfrac{a}{2} }

\rm :\longmapsto\:y =  {tan}^{ - 1} tan\dfrac{a}{2}

\rm :\longmapsto\:y =  \dfrac{a}{2}

\rm :\longmapsto\:y =  \dfrac{1}{2}  {tan}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} \dfrac{1}{2}  {tan}^{ - 1}x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2}  \dfrac{d}{dx}{tan}^{ - 1}x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} \times   \dfrac{1}{1 +  {x}^{2} }

\bf :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{1}{2(1 +  {x}^{2} )} -  -  - (1)

Also, given that,

\rm :\longmapsto\:z =  {tan}^{ - 1}\dfrac{2x}{1 + {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}z = \dfrac{d}{dx} {tan}^{ - 1}\dfrac{2x}{1 + {x}^{2} }

\rm :\longmapsto\:\dfrac{dz}{dx}= \dfrac{1}{1 +  {\bigg(\dfrac{2x}{1 +  {x}^{2} }  \bigg) }^{2} } \dfrac{d}{dx}\dfrac{2x}{1 + {x}^{2} }

\rm \:  =  \:  \: \dfrac{ {(1 +  {x}^{2}) }^{2} }{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} } \times \dfrac{ {1 + x}^{2}\dfrac{d}{dx}2x - 2x\dfrac{d}{dx}(1 +  {x}^{2} ) }{ {(1 +  {x}^{2}) }^{2} }

\rm \:  =  \:  \: \dfrac{ 1}{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} } \times \dfrac{ ({1 + x}^{2})2 - 2x(0 + 2x) }{ 1 }

\rm \:  =  \:  \: \dfrac{2 +  {2x}^{2}  -  {4x}^{2} }{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }

\rm \:  =  \:  \: \dfrac{2  -  {2x}^{2} }{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }

\bf\implies \:\dfrac{dz}{dx} =  \:  \: \dfrac{2 (1 -  {x}^{2} )}{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }

Now,

\red{\rm :\longmapsto\:\dfrac{dy}{dz}}

\rm \:  =  \:  \: \dfrac{dy}{dx} \div \dfrac{dz}{dx}

\rm \:  =  \dfrac{1}{2(1 +  {x}^{2} )}   \div  \: \dfrac{2 (1 -  {x}^{2} )}{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }

\rm \:  =  \:  \: \dfrac{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }{4(1 +  {x}^{2} )(1 -  {x}^{2} )}

\rm \:  =  \:  \: \dfrac{ {(1 +  {x}^{2}) }^{2}  +  {4x}^{2} }{4(1 - {x}^{4} )}

Formula Used :-

\rm :\longmapsto\: {sec}^{2}x -  {tan}^{2}x = 1

\rm :\longmapsto\:1 - cos2x =  {2sin}^{2} x

\rm :\longmapsto\:sin2x = 2sinx \: cosx

\rm :\longmapsto\:\dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} }

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{u}{v}  = \dfrac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n} = n {x}^{n - 1}

Similar questions