if y=tan^x find dy/dx
Answers
Step-by-step explanation:
Given:
y = tanx
TO Find: The value of dy/dx
Formula Used:
Solution:
Answer:
Given:
y = tanx
TO Find: The value of dy/dx
Formula Used:
\tan(x) = \frac{ \sin(x) }{ \cos(x) }tan(x)=
cos(x)
sin(x)
\frac{d}{dx} ( \frac{u}{v} ) = \frac{v \frac{du}{dx} - u \frac{dv}{dx} }{ {v}^{2} }
dx
d
(
v
u
)=
v
2
v
dx
du
−u
dx
dv
Solution:
\begin{gathered} \frac{d}{dx} \tan(x) \\ = \frac{d}{dx} \frac{ \sin(x) }{ \cos(x) } \\ = \frac{ \cos(x) \frac{d}{dx} \sin(x) - \sin(x) \frac{d}{dx} \cos(x) }{ { \cos}^{2} x} \\ = \frac{ \cos(x) \cos(x) - \sin(x)( - \sin(x) )}{ { \cos}^{2}x } \\ = \frac{ { \cos}^{2} x + { \sin}^{2}x }{ { \cos }^{2}x } \\ = \frac{1}{ { \cos }^{2} x } \\ = { \sec }^{2} x\end{gathered}
dx
d
tan(x)
=
dx
d
cos(x)
sin(x)
=
cos
2
x
cos(x)
dx
d
sin(x)−sin(x)
dx
d
cos(x)
=
cos
2
x
cos(x)cos(x)−sin(x)(−sin(x))
=
cos
2
x
cos
2
x+sin
2
x
=
cos
2
x
1
=sec
2
x
okay hope it's helpful to you dear