Math, asked by SAHIL1926, 1 month ago

if y=tan2x,find dy/dx from defination

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \: tan2x \:

Let assume that

\rm :\longmapsto\:f(x) = tan2x

So,

\rm :\longmapsto\:f(x + h) = tan2(x +h) = tan(2x + 2h)

By definition, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

On substituting the values, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{tan(2x + 2h) - tan2x}{h}

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{h}\bigg[\dfrac{sin(2x + 2h)}{cos(2x + 2h)}  - \dfrac{sin2x}{cos2x} \bigg]

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{h}\bigg[\dfrac{sin(2x + 2h)cos2x - sin2xcos(2x + 2h)}{cos(2x + 2h)cos2x} \bigg]

We know,

\boxed{ \tt{ \: sinxcosy + sinycosx = sin(x + y) \: }}

So, using this, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{h}\bigg[\dfrac{sin(2x + 2h - 2x)}{cos(2x + 2h)cos2x} \bigg]

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{h}\bigg[\dfrac{sin2h}{cos(2x + 2h)cos2x} \bigg]

\rm \:  =  \:\dfrac{1}{cos2x} \times \displaystyle\lim_{h \to 0} \frac{1}{cos(2x + 2h)} \times \displaystyle\lim_{h \to 0} \frac{sin2h}{h}

\rm \:  =  \:\dfrac{1}{cos2x} \times  \dfrac{1}{cos2x} \times \displaystyle\lim_{h \to 0} \frac{sin2h}{2h}  \times 2

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x} \:  =  \: 1 \: }}

So, using this, we get

\rm \:  =  \:\dfrac{1}{cos2x} \times  \dfrac{1}{cos2x} \times \times 2

\rm \:  =  \:\dfrac{2}{ {cos}^{2}2x}

\rm \:  =  \: {2sec}^{2}2x

Hence,

\bf\implies \:\boxed{ \tt{ \:  \frac{d}{dx} tan2x = 2 {sec}^{2}2x \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by guptaananya2005
0

Answer:

</p><p>\bf\implies \:\boxed{ \tt{ \: \frac{d}{dx} tan2x = 2 {sec}^{2}2x \: }}</p><p></p><p>

Step-by-step explanation:

Hope it helps you

Similar questions