Physics, asked by PARANJYOTI, 1 year ago

if y = tanx . cos^2x then dy/dx will be

Answers

Answered by pulakmath007
13

If y = tanx . cos²x then dy/dx = cos 2x

Given :

y = tanx . cos²x

To find :

The value of dy/dx

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

\displaystyle \sf{y = tanx. {cos}^{2}x   }

\displaystyle \sf{ \implies y =  \frac{sinx}{cosx} . {cos}^{2}x}

\displaystyle \sf{ \implies y =  sinx.cosx}

\displaystyle \sf{ \implies y =  \frac{1}{2}  \times 2 sinx.cosx}

\displaystyle \sf{ \implies y =  \frac{1}{2}   sin2x}

Step 2 of 2 :

Find the value of dy/dx

\displaystyle \sf{ y =  \frac{1}{2}   sin2x}

Differentiating both sides with respect to x we get

\displaystyle \sf{ \implies  \frac{dy}{dx}  = \frac{d}{dx} \bigg(   \frac{1}{2}   sin2x \bigg)}

\displaystyle \sf{ \implies  \frac{dy}{dx}  = \frac{1}{2}  \frac{d}{dx} \bigg(    sin2x \bigg)}

\displaystyle \sf{ \implies  \frac{dy}{dx}  = \frac{1}{2}  \times cos2x \times  \frac{d}{dx} \bigg(  2x \bigg)}

\displaystyle \sf{ \implies  \frac{dy}{dx}  = \frac{1}{2}  \times cos2x \times  2\frac{d}{dx} \bigg(  x \bigg)}

\displaystyle \sf{ \implies  \frac{dy}{dx}  = \frac{1}{2}  \times cos2x \times  2 \times 1}

\displaystyle \sf{ \implies  \frac{dy}{dx}  = cos \: 2x }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?

https://brainly.in/question/19870192

#SPJ3

Answered by beingmiraculous
0

Answer:

1-2sin^2x

Refer the attachment

Attachments:
Similar questions