If y = , show that
Answer with a proper explanation! :D
Answers
Correct Question :
y = √x/√a + √a/√x show that,
2xy dy/dx = x/a - a/x
Given :
y = √x/√a + √a/√x
Solution :
Differentiating with respect to x the given function
y = √x/√a + √a/√x = (x+a)(√a√x)______(1)
dy/dx = d/dx [x^1/2 1/√a + √a. x^(-1/2)]
= 1/√a . d/dx(x^1/2) + √a .d/dx (x^(-1/2))
= 1/√a . 1/2 x^(-1/2) + √a .(-1/2) x^(-3/2)
= (1/2) [x^(-1/2)/√a - √a x^(-3/2)]
= (1/2) [x^(-1/2) - a. x^(-3/2)] √a_______(2)
Multiplying both sides of (2) by 2xy,
2x.y.dy/dx = 2. x .y . 1/2 [x^(-1/2) - a. x^(-3/2)]/√a
= 2.x.(x+a)/(√a√x) . (1/2). [x^(-1/2) - a. x^(-3/2)]/√a
[Using the value of y from (1)]
= (x+a)/(√a√x) .[x.x^(-1/2) - a.x. x^(-3/2)]/√a
[Taking x inside the bracket]
= (x+a)/(√a√x) .[x^(1/2) - a. x^(-1/2)]/√a
= (1/a) (x+a)/(√x) [x^(1/2) - a. x^(-1/2)]
=(1/a) [x^(1/2).(x+a)/√x - a. x^(-1/2)(x+a)/(√x)]
[Taking (x+a)/(√x) inside the bracket]
=(1/a) [x^(1/2).(x+a)/x^(1/2) - a.(x+a)/(x^(1/2). x^(1/2)]
=(1/a) [(x+a) - a.(x+a)/x]
[Simplifying the quantities within square bracket]
= (x+a)/a - (x+a)/x = x/a +1 -(1 + a/x)
= x/a +1 - 1 - a/x
= x/a - a/x
Hence,
2xy dy/dx = x/a - a/x (Proved)
⚽ More questions to practice :
> If x^y=a^x, how do you prove that dy|dx=xloga-y|xlogx?
> If √ 1-x² + √ 1-y² = a (x -y), how do you prove that dy/dx = (√ (1-y²) / (√1-x²)?
______________________
We seek to show that
Finnally, multiplying by x we get the desired result