IF y+x=1 , Then prove that =-
Answers
Answer:
√(1-y²)
- ------------
√(1-x²)
Step-by-step explanation:
given ---->
----------
y√(1-x²) + x√(1-y²)=1
To prove --->
---------------
dy √(1-y²)
--------- = --------------
dx √(1-x²)
proof --->
---------
y√(1-x²) + x √(1-y²)=1
let x=sinα , y =sinβ
=> α=sin-¹x , β=sin-¹y
sin β √(1-sin²α)+sinα √(1-sin²β)=1
we know that 1-sin²α=cos²α
and 1- sin²β=cos²β
using this
sinβ √cos²α +sinα √cos²β=1
sinβ cos α + sinα cosβ =1
we have a formula
sin (x+y)=sinx cosy+cosx siny
applying this
=> sin(β+α) = 1
=> β + α =1
=> sin-¹y + sin-1x=1
differentiating with respect to x
d d d
=> ------(sin-¹y) +-------(sin-¹X) =-------(1)
dx dx dx
1 d 1
=>--------------- ------(y) + ---------------=0
√(1-y²) dx √1-x²
1 dy 1
=> -------------- ------- = - -------------
√(1-y²) dx √1-x²
dy √1-y²
=> ------------ =- --------------
dx √1-x²
Hope it helps you
Thanks for giving me chance to answer your question
Answer:
Step-by-step explanation:
√(1-y²)
- ------------
√(1-x²)
Step-by-step explanation:
given ---->
----------
y√(1-x²) + x√(1-y²)=1
To prove --->
---------------
dy √(1-y²)
--------- = --------------
dx √(1-x²)
proof --->
---------
y√(1-x²) + x √(1-y²)=1
let x=sinα , y =sinβ
=> α=sin-¹x , β=sin-¹y
sin β √(1-sin²α)+sinα √(1-sin²β)=1
we know that 1-sin²α=cos²α
and 1- sin²β=cos²β
using this
sinβ √cos²α +sinα √cos²β=1
sinβ cos α + sinα cosβ =1
we have a formula
sin (x+y)=sinx cosy+cosx siny
applying this
=> sin(β+α) = 1
=> β + α =1
=> sin-¹y + sin-1x=1
differentiating with respect to x
d d d
=> ------(sin-¹y) +-------(sin-¹X) =-------(1)
dx dx dx
1 d 1
=>--------------- ------(y) + ---------------=0
√(1-y²) dx √1-x²
1 dy 1
=> -------------- ------- = - -------------
√(1-y²) dx √1-x²
dy √1-y²
=> ------------ =- --------------
dx √1-x²