Math, asked by sohanreddyboppidi, 10 months ago

if y=
 \sqrt{x +  \sqrt{x +  \sqrt{x + .... \infty  \: then \: dy \div dx = } } }


Answers

Answered by BrainlyPopularman
33

GIVEN :

 \\ { \bold{y =  \sqrt{x +  \sqrt{x +  \sqrt{x + .................} } } }} \\

TO FIND :

 \\ { \bold{ \:  \:  \dfrac{dy}{dx} = ? }} \\

SOLUTION :

 \\  \implies{ \bold{y =  \sqrt{x +  \sqrt{x +  \sqrt{x + .......} } } }} \\

 \\  \implies{ \bold{y =  \sqrt{x +  \left[ \sqrt{x +  \sqrt{x + .......} } \right]}}} \\

• We should write this as –

 \\  \implies{ \bold{y =  \sqrt{x +  \left(y \right)}}} \\

 \\  \implies{ \bold{y =  \sqrt{x +  y}}} \\

• Square on both sides –

 \\  \implies{ \bold{(y) {}^{2}  =  {x +  y}}} \\

 \\  \implies{ \bold{y{}^{2}  - y =  {x }}} \\

• Now Differentiate with respect to 'x'

 \\  \implies{ \bold{2y \dfrac{dy}{dx}   -  \dfrac{dy}{dx}  =   \dfrac{dx}{dx} }} \\

 \\  \implies{ \bold{2y \dfrac{dy}{dx}   -  \dfrac{dy}{dx}  =   1 }} \\

 \\  \implies{ \bold{(2y   -1)  \dfrac{dy}{dx}  =   1 }} \\

 \\  \implies \large { \boxed{ \bold{ \dfrac{dy}{dx}  =    \dfrac{1}{2y - 1}  }}} \\

 \\ \rule{220}{2} \\

Used identity :

 \\  (1) \:  {  \bold{ \dfrac{d( {x}^{n}) }{dx}  =    n {x}^{n - 1}   }} \\

 \\  (2) \:  {  \bold{ \dfrac{d{x}}{dx}  =   1  }} \\

 \\ \rule{220}{2} \\


RvChaudharY50: Awesome. ❤️
Answered by Anonymous
64

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \star{\sf{ \:  \:  y = \sqrt{x +  \sqrt{x +  \sqrt{x + ..........to \infty } } }  }} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

 \star{\sf{   \:  \: \frac{dy}{dx} = ?}} \\ \\

{\bf{\blue{\underline{Now:}}}}

The given series can be written as:

 : \implies{\sf{ y \:   = \sqrt{x + y} }} \\ \\

Squaring both side,

 : \implies{\sf{  {y}^{2}  \:   = (\sqrt{x + y}) ^{2}  }} \\ \\

 : \implies{\sf{  {y}^{2}  \:   = {x + y} }} \\ \\

 : \implies{\sf{  {y}^{2} -y \:   = {x } }} \\ \\

_______________________________________

Differentiate w.r.t.x,

 : \implies{\sf{  2y \frac{dy}{dx}   -  \frac{dy}{dx}  \:   = 1}} \\ \\

Take dy/dx common,

 : \implies{\sf{  \frac{dy}{dx} (2y  -  1) \:   = 1}} \\ \\

 : \implies{\sf{  \frac{dy}{dx}   =  \frac{1}{2y - 1} }} \\ \\

 \star \boxed{\sf{ { \purple{ Hence  \: \:  \frac{dy}{dx}  =  \frac{1}{2y - 1}  }}}} \\ \\

________________________________________

{\orange{ \boxed{{ \bf{ \star \: formula \: used}}}}}

{\implies{{ \sf{ \star \: \frac{d}{dx}( {x}^{n) } = n {x}^{n - 1} }}}}\\

________________________________

Note:-

  • When we are to find dy/dx in case y is given as an infinite series,then a term is deleted from an infinite series,it remains unaltered.
Similar questions