Math, asked by pkash28211, 9 days ago

If y=(x+√1+x^2)^m then show that
(1+x^2)y2 +xy1-m^2y=0

Answers

Answered by sandy1816
0

y = ( {x +  \sqrt{1 +  {x}^{2} } })^{m} ...(1) \\  \\  y_{1} = m( {x +  \sqrt{1 +  {x}^{2} } })^{m - 1}  (1 +  \frac{2x}{2 \sqrt{1 +  {x}^{2} } } ) \\  \\  y_{1} = m \frac{(x +  \sqrt{1 +  {x}^{2} } ) ^{m - 1} ( \sqrt{1 +  {x}^{2} } + x) }{ \sqrt{1 +  {x}^{2} } }  \\  \\  y_{1} =  \frac{m( {x +  \sqrt{1 +  {x}^{2} } })^{m} }{ \sqrt{1 +  {x}^{2} } }  \\  \\  y_{1} =  \frac{my}{ \sqrt{1 +  {x}^{2} } }  \:  \:  \:  \: [from \:  \: (1) \:  \: ] \\  \\  \sqrt{1 +  {x}^{2} }  \:  y_{1} = my \\  \\ (1 +  {x}^{2} ) y_{1} ^{2}  =  {m}^{2} {y}^{2}   \\   \\ again \:  \: differentiate \: w. \: r .\: t \:  \: x \\  \\ 2 y_{1} y_{2}(1 +  {x}^{2} ) +  { y_{1} }^{2} (2x) =  {m}^{2} 2y y_{1} \\  \\ deviding \:  \: both \:  \: sides \:  \: by \:  \: 2 y_{1} \\  \\ (1 +  {x}^{2} ) y_{2} + x y_{1} -  {m}^{2} y = 0

Similar questions