Math, asked by Srushtisn23, 1 year ago

If y=√x+1/√x show that 2x d y /dx +y =2√x

Answers

Answered by MaheswariS
34

\textbf{Given:}

y=\sqrt{x}+\frac{1}{\sqrt{x}}

y=x^{\frac{1}{2}}+x^{\frac{-1}{2}}

\text{Differentiate with respect to x}

\displaystyle\frac{dy}{dx}=\frac{1}{2}x^{\frac{-1}{2}}-\frac{1}{2}x^{\frac{-3}{2}}

\displaystyle\frac{dy}{dx}=\frac{1}{2\sqrt{x}}-\frac{1}{2\,x\sqrt{x}}

\text{Now,}

\displaystyle\,2x\,\frac{dy}{dx}+y

=\displaystyle,2x(\frac{1}{2\sqrt{x}}-\frac{1}{2\,x\sqrt{x}})+\sqrt{x}+\frac{1}{\sqrt{x}}

=\displaystyle\frac{2x}{2\sqrt{x}}-\frac{2x}{2\,x\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{x}}

=\displaystyle\sqrt{x}-\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{x}}

=\displaystyle\,2\,\sqrt{x}

\implies\boxed{\bf\,2x\,\frac{dy}{dx}+y=2\,\sqrt{x}}

Similar questions