Physics, asked by Gamakshi6529, 1 year ago

If y= [x+1/x](x-1/x+1),then dy/dx

Answers

Answered by Anonymous
17

\underline{\textbf{\large{Answer:}}}

 \boxed{\sf \frac{dy}{dx}=  \frac{x - 1}{ {x}^{3}  +  {x}^{2} }}

\underline{\textbf{\large{Explanation:}}}

 \sf y =( \frac{x + 1}{x} )( \frac{x - 1}{x + 1} ) \\

\underline {\textbf{Differentiation wrt x}}

\sf \frac{dy}{dx}  = ( \frac{x + 1}{x} )( \frac{(x + 1)(1 - 0) - ((x - 1)(1 + 0))}{ {(x + 1)}^{2} } )  \\  + \sf (( \frac{x - 1}{x + 1} )( \frac{x(1 + 0) - (x + 1)(1)}{ {x}^{2} } ))

\sf =(  \frac{x + 1}{x} )( \frac{(x + 1) - (x - 1)}{ {(x + 1)}^{2} } ) \\  +\sf ( \frac{x - 1}{x + 1} )( \frac{x - (x + 1)}{( {x}^{2}) } )

 \sf = ( \frac{x + 1}{x} )( \frac{x + 1 - x + 1}{ {(x + 1)}^{2} } ) + ( \frac{x - 1}{x + 1} )( \frac{x - x - 1}{ {x}^{2} } )

 \sf =  \frac{2}{x(x + 1)}  +(  \frac{ - (x - 1)}{ {x}^{2}(x + 1) } )

\sf =  \frac{2 {x}^{2}(x + 1) + ( - (x - 1)( {x}^{2} + x))  }{x(x + 1)( {x}^{2}(x + 1)) }

\sf =   \frac{2 {x}^{2} (x + 1) + ( - (x - 1)x(x + 1))}{x(x + 1)( {x}^{2} (x + 1))}

\sf =  \frac{2 {x}^{2} + ( - x(x - 1)) }{ {x}^{3}(x + 1) }

\sf =  \frac{2 {x}^{2}  -  {x}^{2}  - x}{ {x}^{3} (x + 1)}

\sf =  \frac{2x - x - 1}{ {x}^{3}  +  {x}^{2} }

\boxed{ \sf\frac{dy}{dx}=  \frac{x - 1}{ {x}^{3}  +  {x}^{2} }}

Similar questions