Math, asked by shubhangiupadhyay232, 1 month ago

if y=√x^2+1.differentiate using chain rule.
I'm gud. gud aftr noon. ​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: y = \sqrt{ {x}^{2}  + 1}

can be rewritten as

\rm :\longmapsto\:y =  {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2} }

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2} }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2}  - 1}\dfrac{d}{dx}\bigg[ {x}^{2}  + 1\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}(f + g) = \dfrac{d}{dx}f + \dfrac{d}{dx}g}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ \dfrac{d}{dx}{x}^{2}  + \dfrac{d}{dx}1\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ 2x + 0\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ 2x\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =  {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ x\bigg]

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{x}{ \sqrt{ {x}^{2}  + 1} }}}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitsmrseenuxX
2

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: y = \sqrt{ {x}^{2}  + 1}

can be rewritten as

\rm :\longmapsto\:y =  {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2} }

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2} }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}  \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{\dfrac{1}{2}  - 1}\dfrac{d}{dx}\bigg[ {x}^{2}  + 1\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}(f + g) = \dfrac{d}{dx}f + \dfrac{d}{dx}g}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ \dfrac{d}{dx}{x}^{2}  + \dfrac{d}{dx}1\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ 2x + 0\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ 2x\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =  {\bigg[ {x}^{2} + 1 \bigg]}^{ -  \: \dfrac{1}{2}}\bigg[ x\bigg]

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{x}{ \sqrt{ {x}^{2}  + 1} }}}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions