Math, asked by jerryjoseph57, 4 months ago

If y = x^2sin2x , then the first derivative is​

Answers

Answered by mathdude500
1

\bf\large \underbrace\red{Answer:}

Given :-

\bf \:y =  {x}^{2} sin2x

To find :-

\bf \:\dfrac{dy}{dx}

Formula used :-

\bf \:\dfrac{d}{dx} (u.v) = u\dfrac{d}{dx} v + v\dfrac{d}{dx} u

\bf \:\dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1}

\bf \:\dfrac{d}{dx} sinx = cosx

\bf\underbrace\orange{Solution:}

\bf \:y =  {x}^{2} sin2x

Differentiate w. r. t. x, we get

\bf \:\dfrac{dy}{dx}  = \dfrac{d}{dx} ( {x}^{2} sin2x)

\bf \:\dfrac{dy}{dx}  =  {x}^{2} \dfrac{d}{dx} sin2x + sin2x\dfrac{d}{dx}  {x}^{2}

\bf \:\dfrac{dy}{dx}  =  {x}^{2} cos2x\dfrac{d}{dx} 2x + sin2x \times 2x

\bf \:\dfrac{dy}{dx}  = 2 {x}^{2} cos2x + 2xsin2x

\bf\implies \:\dfrac{dy}{dx}  = 2x(xcos2x + sin2x)

_________________________________________

Similar questions