Math, asked by saisandeepkakara, 11 months ago

If y = x^4 + tan x then find y11

Answers

Answered by sweetyheree
2

Answer:

hey, if u ask to find double derivative of given equation

See the attachment above

Step-by-step explanation:

mark as brainliest if u get it

:)

Attachments:
Answered by knjroopa
0

Step-by-step explanation:

Given If y = x^4 + tan x then find y11

  • We need to find second derivative.
  • We know that from product rule  
  • So y = f(x) . g(x)
  • So y’ = f’(x).g(x) + f(x) .g’(x)
  • So y’ = 4 x^3 tan x + x^4 (1 + tan^2 x)
  • Or y’ = 4x^3tan x + x^4. 1/cos^2 x
  • So we get
  • So y’ = 12 x^2 tan x + 4x^2 (1 + tan^2x) + 4x^3(1 + tan^2x) + x^4. 2 tan x(1 + tan^2 x)= 2x^2 (6 tan x + 2x (1 + tan^2x) + 2x(1 + tan^2 x) + x^2 tan x(1 + tan^2 x) =
  • 2x^2 (6 tan x + 2x + 2x tan^2 x + 2x + 2x tan^2 x + x^2 tan x + x^2 tan^2 x) =  
  • 2x^2(4x + 6 tan x + 4x tan^2 x + x^2 tan^2 x + x^2 tan^3 x)

Reference link will be

https://brainly.in/question/12285363

Similar questions