Math, asked by vaibhavirevankar23, 20 hours ago

If y = x cosecx , then find dy/dx ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm \: y = x \: cosecx \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y = \dfrac{d}{dx}(x \: cosecx) \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx}(u.v) = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} = x\dfrac{d}{dx}cosecx + cosecx\dfrac{d}{dx}x \\

\rm \: \dfrac{dy}{dx} = x( - cosecx \: cotx) + cosecx \times 1 \\

\rm \: \dfrac{dy}{dx} =  - x \: cosecx \: cotx \:  +  \: cosecx \\

\bf\implies \:\dfrac{dy}{dx} = cosecx( - x \: cotx \:  +  \: 1) \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions