Math, asked by arsalan2331, 1 month ago

If y = x log y show that x dy/dx = y^2/(y - x)

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y = x log(y)  \\

 \frac{d}{dx} (y)=  log(y) \frac{d}{dx}(x)  + x \frac{d}{dx}( log(y)  )   \\

 \implies \frac{dy}{dx}=  log(y)   + x  \frac{1}{y}  . \frac{dy}{dx}   \\

 \implies \frac{dy}{dx}=   \frac{y}{x}    + \frac{x}{y}  . \frac{dy}{dx}   \\

 \implies \frac{dy}{dx } -  \frac{x}{y}  . \frac{dy}{dx}    =  \frac{y}{x}     \\

 \implies (1 -  \frac{x}{y})  . \frac{dy}{dx}    =  \frac{y}{x}     \\

 \implies ( \frac{y - x}{y})  . \frac{dy}{dx}    =  \frac{y}{x}     \\

 \implies \frac{dy}{dx}    =  \frac{ {y}^{2} }{x(y - x)}     \\

 \implies x\frac{dy}{dx}    =  \frac{ {y}^{2} }{(y - x)}     \\

Similar questions