Math, asked by shravninake, 2 months ago

if y=(x power 2+1) (2x-1) find dy/ dx​

Answers

Answered by Asterinn
48

We have to differentiate the following expression :-

 \rm y =  ({x}^{2}  + 1)(2x - 1)

\rm  \longrightarrow \dfrac{dy}{dx} =   \dfrac{d  \bigg(({x}^{2}  + 1)(2x - 1)\bigg)}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} = (2x - 1)  \dfrac{d  \bigg({x}^{2}  + 1\bigg)}{dx}  + ({x}^{2}  + 1)  \dfrac{d  \bigg(2x - 1\bigg)}{dx}

\rm  \longrightarrow \dfrac{dy}{dx} = (2x - 1)  (2x)  + ({x}^{2}  + 1)  2

\rm  \longrightarrow \dfrac{dy}{dx} = 4 {x}^{2} - 2x  + 2{x}^{2}  +2

\rm  \longrightarrow \dfrac{dy}{dx} = 6{x}^{2} - 2x    +2

Answer :-

 \rm \dfrac{dy}{dx} = 6{x}^{2} - 2x    +2

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Similar questions