if y = x sin x^2 then the value of dy ?dx is
Answers
Answer:
Dy/dx=xcosx^2(2x)+sinx^2
=2x^2cosx^2+sinx^2
Answer:
Answer
The general solution of the given equation is :
2nπ ± π/3 , n € Z
Given
The trigonometric equation is
\bullet \: \: \sf \sin^{2}\theta - 2\cos\theta + \dfrac{1}{4} = 0∙sin
2
θ−2cosθ+
4
1
=0
To Find
The general value of \sf \thetaθ
Solution
Given ,
\begin{gathered} \sf \sin {}^{2} \theta - 2 \cos \theta + \dfrac{1}{4} = 0 \\ \\ \sf\implies1 - \cos {}^{2} \theta - 2 \cos \theta + \dfrac{1}{4} = 0 \\ \\ \sf \implies4 - 4 \cos {}^{2} \theta - 8 \cos \theta + 1 = 0 \\ \\ \sf \implies - 4 \cos {}^{2} \theta - 8 \cos \theta + 5 = 0 \\ \\ \sf \implies4 \cos {}^{2} \theta + 8\cos \theta - 5 = 0 \\ \\ \sf \sf\implies4 { \cos}^{2} \theta - 2 \cos \theta + 10 \cos \theta - 5 = 0 \\ \\ \sf \implies2 \cos \theta( \cos \theta - 1) + 5(2 \cos \theta - 1) = 0 \\ \\ \sf \implies( 2\cos \theta - 1)(2 \cos \theta + 5) = 0\end{gathered}
sin
2
θ−2cosθ+
4
1
=0
⟹1−cos
2
θ−2cosθ+
4
1
=0
⟹4−4cos
2
θ−8cosθ+1=0
⟹−4cos
2
θ−8cosθ+5=0
⟹4cos
2
θ+8cosθ−5=0
⟹4cos
2
θ−2cosθ+10cosθ−5=0
⟹2cosθ(cosθ−1)+5(2cosθ−1)=0
⟹(2cosθ−1)(2cosθ+5)=0
Now we have ,
\begin{gathered}\sf\implies 2\cos\theta - 1 = 0 \: \: and \: \: implies 2\cos\theta + 5 = 0 \\\\ \sf\implies \cos\theta = \dfrac{1}{2} \: \: and \: \implies \cos\theta = \dfrac{-5}{2} (not \: possible ) \end{gathered}
⟹2cosθ−1=0andimplies2cosθ+5=0
⟹cosθ=
2
1
and⟹cosθ=
2
−5
(notpossible)
So we are taking ,
\begin{gathered}\sf\implies \cos\theta = \dfrac{1}{2} \\\\ \sf\implies \cos\theta = \cos\dfrac{\pi}{3} \\\\ \sf\implies x = 2n\pi \pm \dfrac{\pi}{3} , n \in Z \end{gathered}
⟹cosθ=
2
1
⟹cosθ=cos
3
π
⟹x=2nπ±
3
π
,n∈Z