Math, asked by yashika6213, 9 months ago


if y=x^tanx +(tanx)^x, then find dy/dx​

Answers

Answered by ambarkumar1
11

y = x {}^{ tanx }  + tanx {}^{x}

y = u+ v\:  \:  \:  \:

 \frac{dy}{dx}  =  \frac{du}{dx}  +  \frac{dv}{dx}  \:  \:  \:  \:  \:  \:  \:  \:  - (1)

u = x {}^{tanx}

 log \: u = tanx \: logx

Apply differentiation

 \frac{1}{u}  \frac{du}{dx}  = tanx( \frac{1}{x} ) + logx(sec {}^{2} x)

 \frac{du}{dx}  =  x {}^{tanx}( \frac{tanx}{x}  + sec {}^{2} x \: logx)

Now,

v = tanx {}^{x}

Take log and apply diff.

logv = xlog \: tanx

 \frac{1}{v}  \frac{dv}{dx}  = 1(logtanx) + x( \frac{sec {}^{2}x }{tanx} )

 \frac{dv}{dx}  = tanx {}^{x}( logtanx + x\frac{sec {}^{2}x }{tanx} )

Put in equation ( 1 )

 \frac{dy}{dx}  =  x {}^{tanx}( \frac{tanx}{x}  + sec {}^{2} x \: logx) + tanx {}^{x}( logtanx + x\frac{sec {}^{2}x }{tanx} )

Similar questions