Math, asked by as7453821036, 2 months ago


if y=
x^x^-°°, then
x(1-ylogy) dy is equal to​

Answers

Answered by mathdude500
3

Appropriate Question :-

\bf :\longmapsto\:If \: y =  {x}^{ {x}^{ {x -  -  -   \infty }}}, then \: x(1 - ylogx)\dfrac{dy}{dx}  =

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  {x}^{ {x}^{ {x -  -  -   \infty }} }

can be rewritten as

\rm :\longmapsto\:y =  {x}^{y}

On taking log on both sides,

\rm :\longmapsto\:logy =  log({x}^{y} )

\rm :\longmapsto\:logy =  ylog{x}

On differentiating both sides w. r. t. x,

\rm :\longmapsto\:\dfrac{d}{dx} logy = \dfrac{d}{dx} ylog{x}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}y = y\dfrac{d}{dx} \: logx +  \: logx\dfrac{d}{dx}y

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:\dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v \: +  \:  v\dfrac{d}{dx}u \bigg \}}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = y \: \dfrac{1}{x} +  \: logx\dfrac{dy}{dx}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \dfrac{d}{dx}logx = \dfrac{1}{x} \bigg \}}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  -   \: logx\dfrac{dy}{dx} =  \dfrac{y}{x}

\rm :\longmapsto\:\dfrac{dy}{dx}\bigg(\dfrac{1}{y} - logx\bigg) = \dfrac{y}{x}

\rm :\longmapsto\:\dfrac{dy}{dx}\bigg(\dfrac{1 - y \: logx}{y}\bigg) = \dfrac{y}{x}

\bf\implies \:x(1 - ylogx)\dfrac{dy}{dx}  =  {y}^{2}

Additional Information :-

\green{\boxed{ \tt \:\dfrac{d}{dx}x = 1} }

\green{\boxed{ \tt \:\dfrac{d}{dx}sinx = cosx} }

\green{\boxed{ \tt \:\dfrac{d}{dx}cosx =  -  \: sinx} }

\green{\boxed{ \tt \:\dfrac{d}{dx}tanx =  {sec}^{2}x}}

\green{\boxed{ \tt \:\dfrac{d}{dx}cotx =   - {cosec}^{2}x}}

\green{\boxed{ \tt \: \dfrac{d}{dx}secx =  \: secx \: tanx}}

\green{\boxed{ \tt \: \dfrac{d}{dx}cosecx =   - \: cosecx \: cotx}}

\green{\boxed{ \tt \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}

\green{\boxed{ \tt \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x}loga }}

\green{\boxed{ \tt \: \dfrac{d}{dx}k = 0}}

Similar questions