Math, asked by rupanshu01, 1 year ago

if y=(x+√x^2-1)^m then (x^2-1)(dy/dx)^2-m^2y^2 is proved to be​

Answers

Answered by MaheswariS
61

Answer:

(x^2-1)(\frac{dy}{dx})^2-m^2y^2=0

Step-by-step explanation:

y=(x+\sqrt{x^2-1})^m

Differentiate with respect to x

\frac{dy}{dx}=m(x+\sqrt{x^2-1})^{m-1}*[1+\frac{2x}{2\sqrt{x^2-1}}]

\frac{dy}{dx}=m(x+\sqrt{x^2-1})^{m-1}*[1+\frac{x}{\sqrt{x^2-1}}]

\frac{dy}{dx}=m(x+\sqrt{x^2-1})^{m-1}*[\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}]

squaring on both sides we get

(\frac{dy}{dx})^2=m^2(x+\sqrt{x^2-1})^{2m-2}*[\frac{(\sqrt{x^2-1}+x)^2}{x^2-1}]

\implies\:(x^2-1)(\frac{dy}{dx})^2=m^2(x+\sqrt{x^2-1})^{2m-2}*[\(x+\sqrt{x^2-1})^2}]

\implies\:(x^2-1)(\frac{dy}{dx})^2=m^2(x+\sqrt{x^2-1})^{2m}

\implies\:(x^2-1)(\frac{dy}{dx})^2=m^2[(x+\sqrt{x^2-1})^m]^2

\implies\:(x^2-1)(\frac{dy}{dx})^2=m^2[y]^2

\implies\:(x^2-1)(\frac{dy}{dx})^2-m^2y^2=0

Similar questions