Science, asked by aaisha12319, 11 months ago

if y=√x(x^2+7) then dy/dx is

Answers

Answered by nvssarath
1

Answer:

{2Root[x(x/\2+7)]}/\-1 * [x/\2+7+2x]

Explanation:

d/dx (x/\n)= n*x/\n-1

(uv)'=u'v=uv'

First we have root then x(x/\2+7)

d/dx(x/\2+7)=2x

I hope that you find it useful

Answered by brokendreams
1

The differentiation of y = \sqrt{x} (2x^{2} + 7) is \frac{dy}{dx}  = \frac{5x^{\frac{3}{2}}}{2}  + \frac{7}{2\sqrt{x}}

Step-by-step Explanation:

Given: y = \sqrt{x} (2x^{2} + 7)

To Find: \frac{dy}{dx}

Solution:

  • Finding  \frac{dy}{dx} for the function y = \sqrt{x} (2x^{2} + 7)

We have given y = \sqrt{x} (2x^{2} + 7), which can be written as

\Rightarrow y = \sqrt{x} (2x^{2}) + 7\sqrt{x}

\Rightarrow y = 2x^{\frac{5}{2}} + 7\sqrt{x}

Now, differentiating the above with respect to 'x', we get;

\Rightarrow \frac{dy}{dx}  = \frac{dx^{\frac{5}{2}}}{dx} + 7 \frac{d\sqrt{x}}{dx}

using the differentiation rule \frac{dx^{n} }{dx} = n x^{n-1} and \frac{d\sqrt{x} }{dx} = \frac{1}{2\sqrt{x} }, we get

\Rightarrow \frac{dy}{dx}  = \frac{5x^{\frac{3}{2}}}{2}  + \frac{7}{2\sqrt{x}}

Hence, the differentiation of y = \sqrt{x} (2x^{2} + 7) is \frac{dy}{dx}  = \frac{5x^{\frac{3}{2}}}{2}  + \frac{7}{2\sqrt{x}}

Similar questions