Math, asked by MohammedIshfaq, 21 hours ago

if y = x/x+a prove that x dy/dx= y(1-y)

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = \dfrac{x}{x + a}

can be rewritten as

\rm :\longmapsto\:y = \dfrac{x + a - a}{x + a}

\rm :\longmapsto\:y = \dfrac{x + a}{x + a}  - \dfrac{a}{x + a}

\rm :\longmapsto\:y = 1- \dfrac{a}{x + a}

\red{\rm :\longmapsto\:y = 1 - a {(x + a)}^{ - 1} \: }

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx} [1 - a {(x + a)}^{ - 1}] \: }

\red{\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{d}{dx} 1 - a \dfrac{d}{dx} {(x + a)}^{ - 1} \: }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} k \:  =  \: 0 \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}  {x}^{n} =  {nx}^{n - 1}}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = 0 + a {(x + a)}^{ - 2}\dfrac{d}{dx} (x + a)

\rm :\longmapsto\:\dfrac{dy}{dx}  =  a {(x + a)}^{ - 2} (1+ 0)

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx}  =  \frac{a}{ {(x + a)}^{2} } \: }}

Now, Consider

\rm :\longmapsto\:y(1 - y)

\rm \:  =  \: \dfrac{a}{x + a} \bigg[1 - \dfrac{a}{x + a} \bigg]

\rm \:  =  \: \dfrac{a}{x + a} \bigg[\dfrac{x + a - a}{x + a} \bigg]

\rm \:  =  \: \dfrac{a}{x + a} \bigg[\dfrac{x}{x + a} \bigg]

\rm \:  =  \: x \times \dfrac{a}{ {(x + a)}^{2} }

\rm \:  =  \: x\dfrac{dy}{dx}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions